可是我们经过上百次试验,还是没能明白,是什么因素影响着晶体生成大小的,更谈不上控制其生长。”
萧强传递给他们的那份文件,在项目组成员中引起了极大的轰动。
的确,就像那个教授所言。要是大肠杆菌生成的晶体足够大,他们就能对其加工,以大批量制造出符合需要地光晶体管。
如果这个教授所说属实,那他算是为所有的项目组研究人员,开出了一条新路。
欧宏博当场就想回到实验室,将这个实验重做一次,看看是否能得到这个结果。要是试验成功,那他们可以利用操作原子核的技术。对如此微小的晶体进行加工,生产出第一个微型光晶体管。
萧强希望他们做的工作,就是这个。
制作一批微型的光晶体管、二极管,就为制造光处理器,奠定了基础。
他可以帮助,提供制造蕊片所需的上亿个微型光晶体管、二极管。
但是,让他们纯手工,将上亿微型光元器件安装到位。无异于要他们的命!没有一个人,可以微操作,完成这项艰巨地工作。
萧强设想的是。由项目组完成主要功能电路的制作,再由他进行大批量重组,最后交给实验室进行集成。
当然,这个工作也近乎于不可能完成,但至少比当前看不到一点希望。要好得多。
他所说的第二个设想,是关于光存储。
这个设想,还来自于这次研制光电混合处理器。偶然所得。
在制作成功的光电混合处理器中,集成在处理器中的内存,采用了多级缓冲的形式来设置。
其实,多极缓冲内存,早已被英特尔和寰宇公司的国腾蕊片所采用。
之所以采用多级缓冲,就是因为集成在处理器中地内存速度快,而主板内存等其他设备
,从而引起速度不匹配。
通过多级缓冲,将处理器缓存的速度,降低到和外存同样,使之正常运行,这就是多级缓冲的目地。
萧强就从这个缓冲中,得到灵感。
他在这次会议上,所说的就是他从中,引发出来的一个设想:用缓冲的方式,来实现光暂存。
需要处理的数据数以亿万,但不可能同时交由处理器,让其对数据进行运算。
他地设想,就是根据数据处理的先后顺序,分别存储的不同地存储器中。
例如读取次数较少的数据,完全可以用目前能够制作的高速内存来担任。暂存缓冲器则随时读取这些数据,以供光脑即时读取处理。处理完毕,或是暂时不用的数据,又回到内存存储起来,并被再一次调用调到缓冲器。
通过暂存缓冲器,光处理器可以随时以光速调用数据,不会出现内存调用延迟。
而缓冲器虽然无法真正保存数据,但可以通过不断将数据传回内存,从而起到保存的效果。
同样,如同现行处理器中,直接集成在内的缓存一样,可以用暂存缓冲器,以几乎和光处理器同步的速度,来暂存数据,供处理器调用。
“暂存器!”欧宏博猛然跳了起来。
好几个科学家也激动地跳起来,但又颓然坐了下来。
他们现在有办法,让光的速度延缓到汽车行驶的速度,从这一方面来说,这个延迟,足够作为暂存器使用。
可是,他们让光延迟的装置,非常之大,不管从什么角度看,都不可能将其缩小到,集成进处理器的程度。另外,这个装置,是靠冷冻的方式,来达到让光尽速的目的。虽然通过这个装置的光,确实减速了,但他们并不能做到有选择性地,让携带数据的光,进入这个装置。
“为什么要集成进处理器?”萧强不以为然地说道“我们现在只求作出原型机,并不在乎大小、长度,实在不行,做成超级计算机也行。不过,我考虑的方向,并不是用你们的装置来减速,而是用光纤延迟来减速。”
“光线延迟?”这个方法,欧宏博他们也想过,也是现在科技界所普遍采用的方式。
光纤延迟,就是让携带数据的光,在光纤里反复来回,从而达到暂存的效果。
萧强想的则是另一种方式。
他设想的暂存器,是一个三维球体。
由于激光的直径可以达到几十纳米,在头发丝粗细的通道里,就可以有几千根激光并行。
萧强设想用不计其数的纳米级激光触发器,密布在三维球体的不同位置,让激光束,在这个球体中来回运行,直到经过无数次反射之后,从正确的读取口出来,被光处理器所调用。
半导体激光器只在最开始启动的时候,有延迟,随后可以达到和光信息同步,从而保证激光信息的光速传递。
同时,激光转发器发射的激光束,可以将衰减的光束凝聚,加强光信号。
萧强知道,这个暂存器的设想,和光晶体制作,以及集成都是现代技术的极限。从理论上说,都由实现的可能,但实现的过程,则难于上青天。